
Benchmarking universal machine learning 
potentials on defects in bcc metals

CNRS, INSA Lyon, Universite Claude Bernard Lyon 1, MATEIS, UMR5510, 69621 Villeurbanne, France

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

Testing the universal models  for W, Nb, Mo revealed:

  Systematic softening for MACE-MP0b3 model

  Models trained on larger databases show better performance

  Can we use the spread in the results with different models for 

uncertainty quantification?

Recent advancement of machine learning force fields allowed the 
development of universal models capable of describing large number of 
elements and chemical environments. Here we test a few universal models 
with different architectures and trained on different databases: MACE-MP0b3, 
MACE-MPA-0, MACE-MATPES: three versions of MACE potential [1], 
neuroevolution potentias NEP-2024 [2] and NEP89 [3], Universal Model for
Atoms UMA-S- 1 [4], Graph Atomic Cluster Expansion model GRACE-2L: [5]. We 
look at properties of point and extended defects in three BCC metals: W, Mo, 
Nb and comare the results with available DFT and QM/MM data. 

Introduction

Elastic properties and point defects
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*Details of the calculation methods and sources of reference ab initio data can be found in [1], section A.13: Point and extended defects in BCC metals and supplementary materials of [6].. 

Energy - volume curves

*UMA-S-1 model has limited capacity to treat free boundary conditions and free surfaces needed for cells containing extended defects, thus some results are missing. 

Discussion
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Future work:

   Testing impurity properties to tackle desctiption of chemistry

   Fine tuning on optimal DFT data

   Using fine tuned models in a hybrid QM/ML scheme in a QM 
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