

Benchmarking universal machine learning potentials on defects in bcc metals

Petr Grigorev¹, Thomas D. Swinburne² and James R. Kermode³

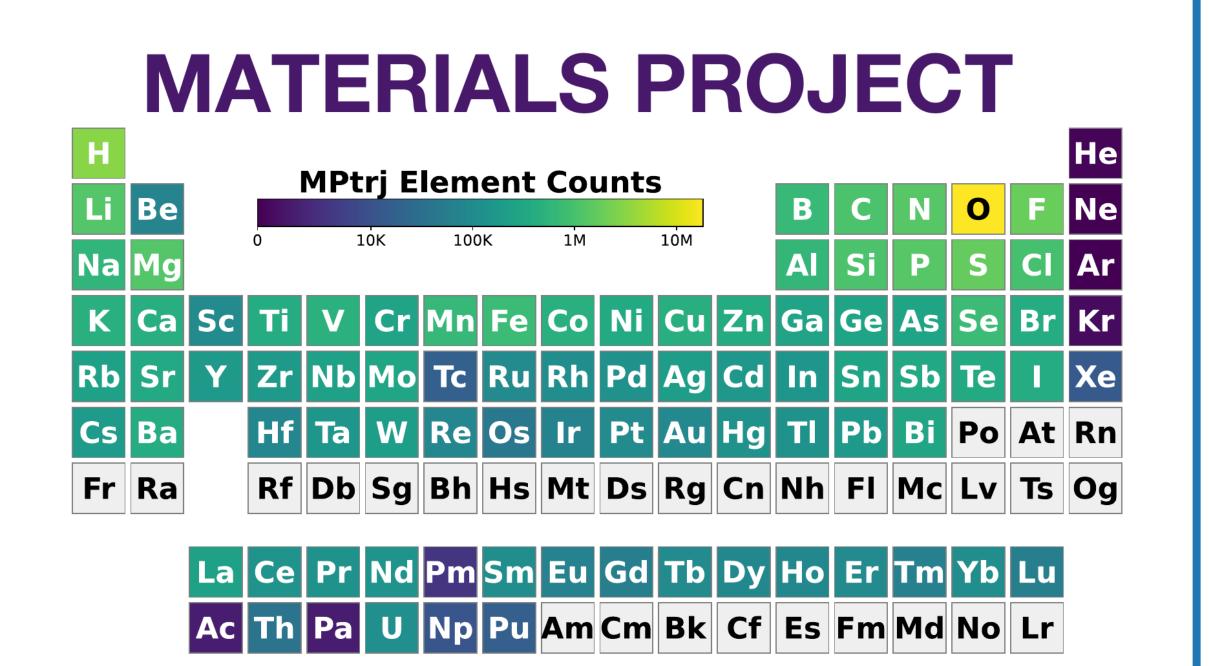
¹CNRS, INSA Lyon, Universite Claude Bernard Lyon 1, MATEIS, UMR5510, 69621 Villeurbanne, France

²Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

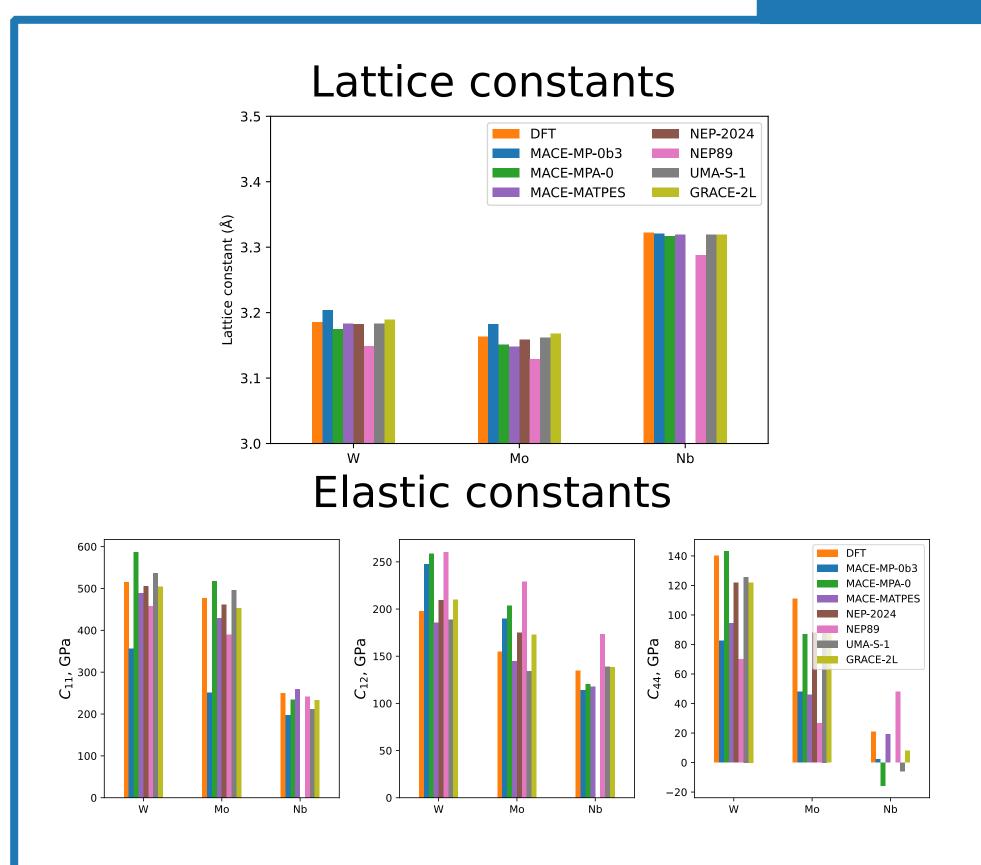
³Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry, United Kingdom

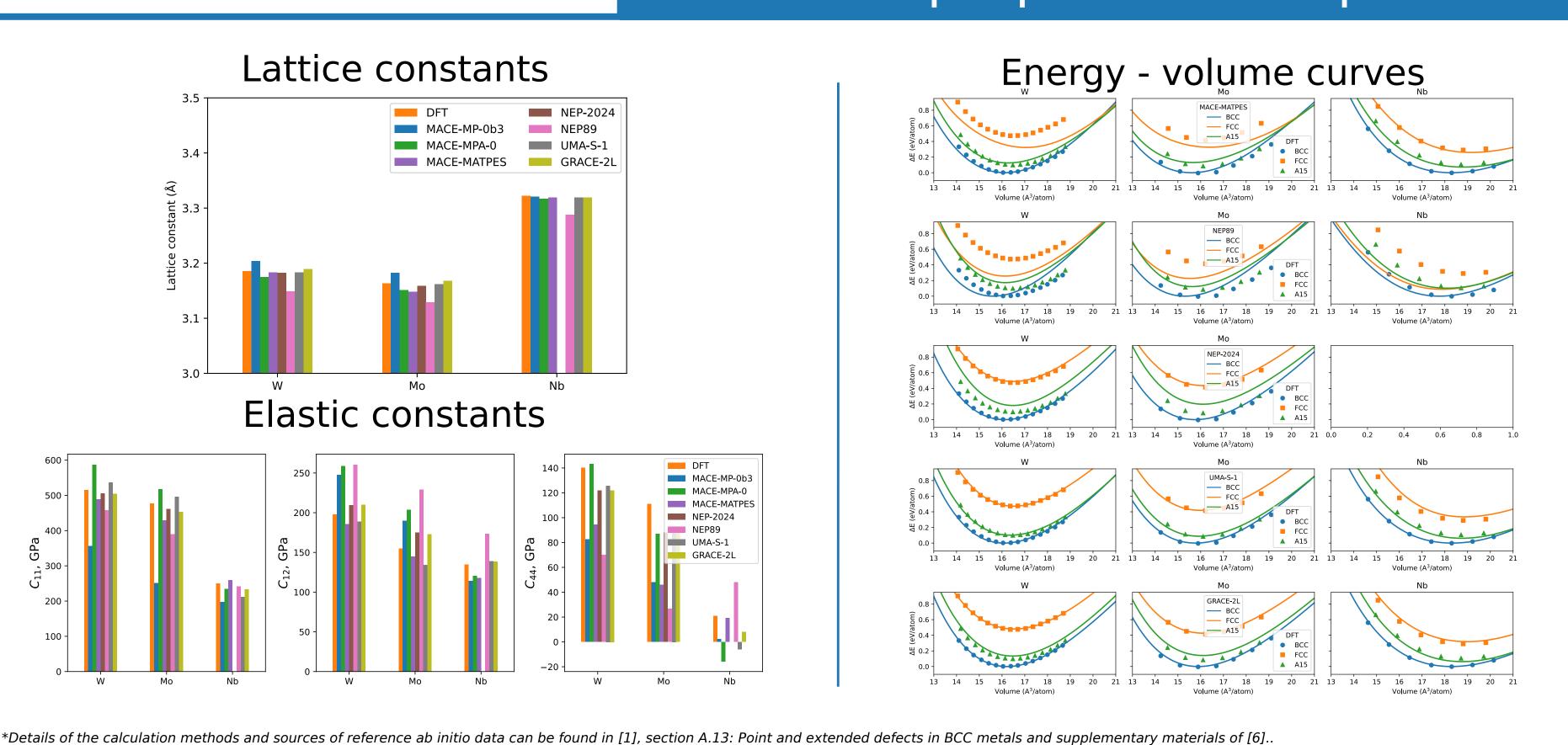
Introduction

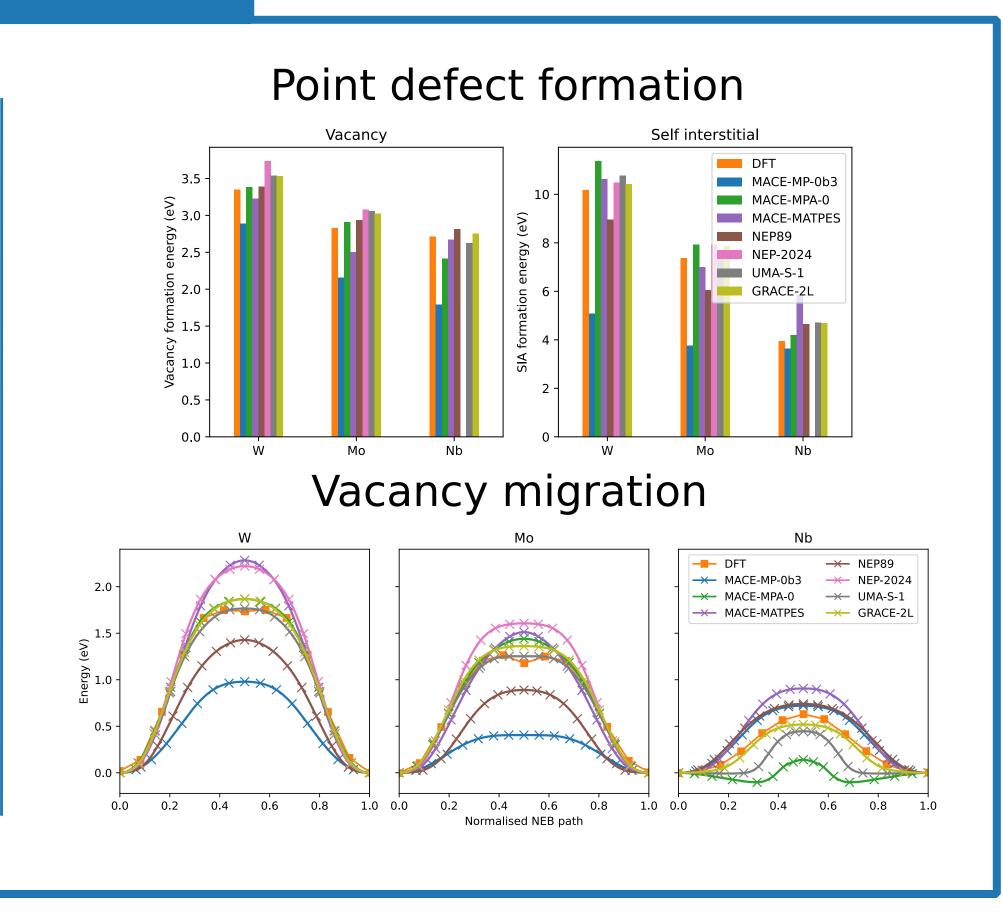
Recent advancement of machine learning force fields allowed the development of universal models capable of describing large number of elements and chemical environments. Here we test a few universal models with different architectures and trained on different databases: MACE-MP0b3, MACE-MATPES: three versions of MACE neuroevolution potentias NEP-2024 [2] and NEP89 [3], Universal Model for Atoms UMA-S- 1 [4], Graph Atomic Cluster Expansion model GRACE-2L: [5]. We look at properties of point and extended defects in three BCC metals: W, Mo, Nb and comare the results with available DFT and QM/MM data.



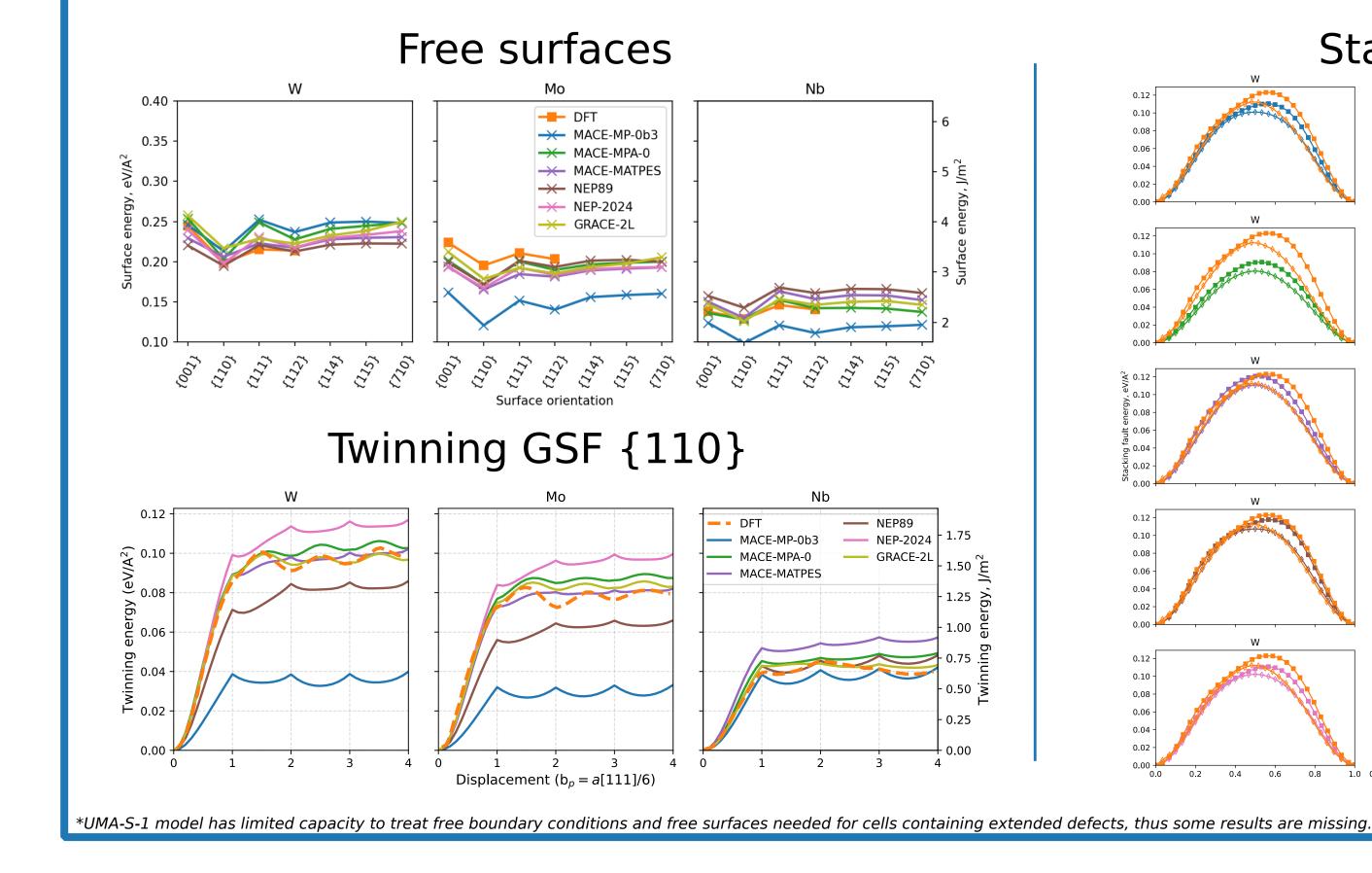
Elastic properties and point defects

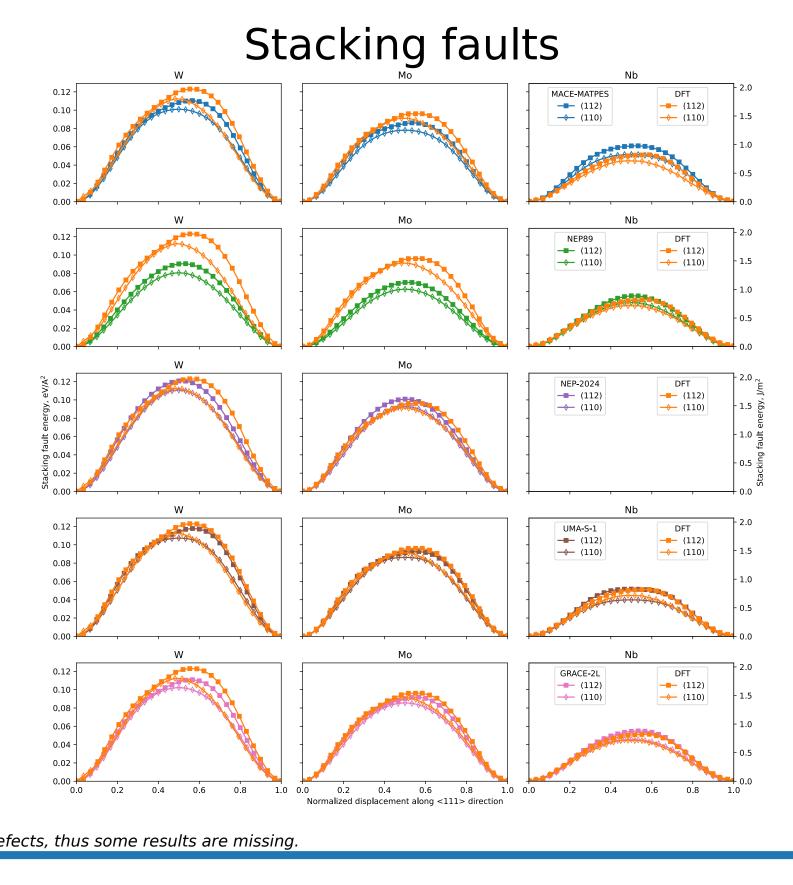


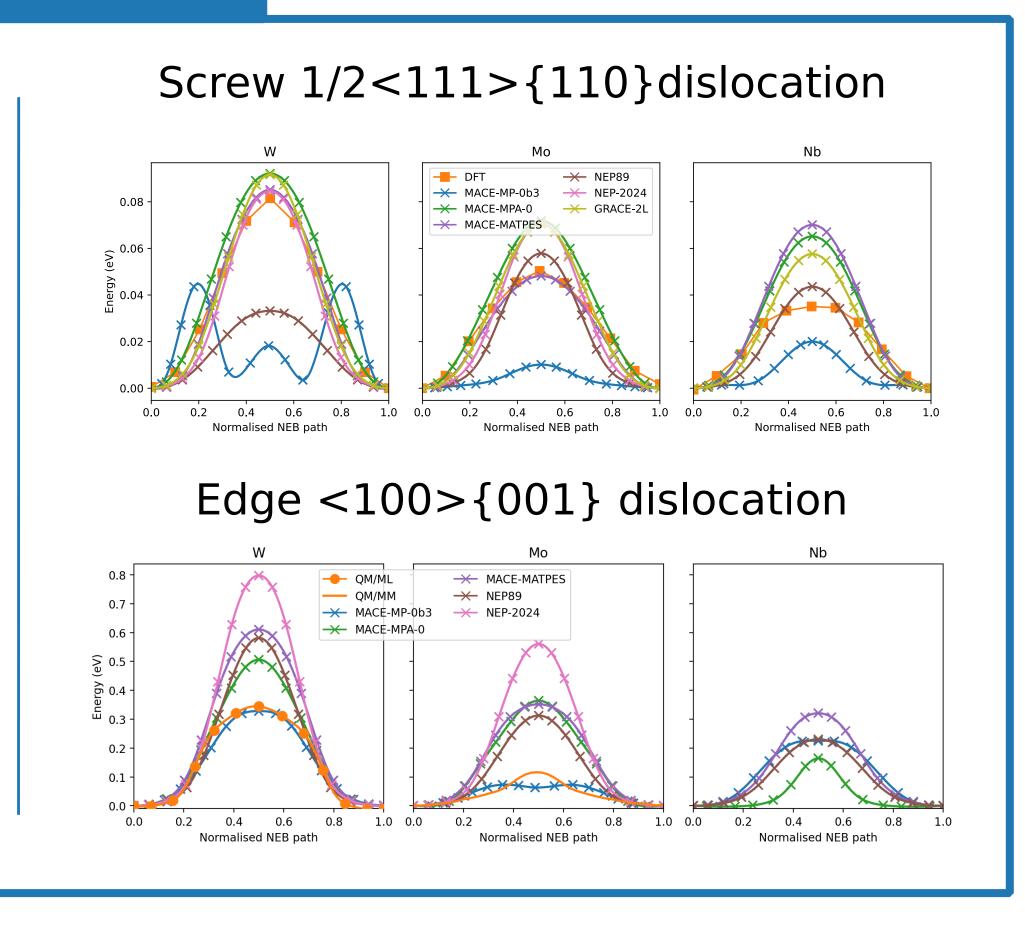




Extended defects







Discussion

Testing the universal models for W, Nb, Mo revealed:

- Systematic softening for MACE-MP0b3 model
- Models trained on *larger* databases show better performance
- Can we use the spread in the results with different models for uncertainty quantification?

Future work:

- Testing impurity properties to tackle description of chemistry
- Fine tuning on optimal DFT data
- Using fine tuned models in a hybrid QM/ML scheme in a QM region

References:

- [1] I. Batatia et al, A foundation model for atomistic materials chemistry, J. Chem. Phys.
- [2] Song, K. et al. General-purpose machine-learned potential for 16 elemental metals and their alloys. Nature Communications 15, 10208 (2024).
- [3] Liang, T. et al. NEP89: Universal neuroevolution potential for inorganic and organic
- materials across 89 elements. (2025). arXiv:2504.21286
- [4] Wood, B. M. et al. UMA: A family of universal models for atoms. (2025). arXiv:2506.23971

163, 184110 (2025)

- [5] Lysogorskiy, Y., Bochka[rev, A. & Drautz, R. Graph atomic cluster expansion for
- foundational machine learning interatomic potentials. (2025).
- arXiv:2508.17936
- [6] Starikov, S., et. al Angular-dependent interatomic potential for large-scale simulation of bcc and hcp multi-component
- refractory alloys. (2026). Computational Materials Science, 262, 114369. For updates visit pgrigorev.github.io and tomswinburne.github.io