Use of foundation model for defects in BCC metals

Petr Grigorev¹, Thomas D. Swinburne² and James R. Kermode³

¹Aix Marseille Université, CNRS, IM2NP, Marseille, France ²Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France ³Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry, United Kingdom

Introduction

Recent advancement of machine learning force fields allowed the development of universal models capable of describing large number of elements and chemical environments. Here we test a novel model MACE-MP0 [1] which is based on MACE architecture [2] and is trained on a public database of 150k inorganic structure types (1.5M configurations in total) composed of 89 elements [3]. We look at properties of point and extended defects in three BCC metals: W, Mo, Nb. For the case of W we demonstrated how the model can be used as a "foundation model" allowing for further fine *tuning for a given application.*

The MP dataset includes 3 elemental tungsten, 2 elemental molybdenum, and 2 elemental niobium structures. They are all crystalline without any defects.

Nb Mo Tc Ru Rh Pd Ag Cd In Sn St

GalGe As

MATERIALS PROJECT

1M

Cr Mn Fe Co Ni Cu Zn

MPtrj Element Counts

100K

10K

Li Be

Na Mg

LaCePrNdPmSmEuGdTbDyHoErTmYbLuAcThPaUNpPuAmCmBkCfEsFmMdNoLr

Fine-tuning for W

Training data

MACE-MP-0 medium model fine tuned on W DFT data:

- 100 BCC and FCC cubic cells (close to equil. volume)
- 60 surface cells
- 122 stacking fault configurations
- 4 x 135-atom screw dislocation quadrupoles
- 3 x 53-atom vacancy cells

100 epochs of fine-tuning on 90% of data (10% validation) Fits with and without DFT energies (to check E0 effects)

Elastic constants

Screw 1/2<111>{110}dislocation

Edge <100>{001} dislocation

Point defects

Conclusions

Testing original MACE-MP-0 for model for W, Nb, Mo revealed:

- Softer elastic properties for all three metals
- Point defect formation energies are well reproduced with underestimation of interstitial formation energy for W and Mo
- Stacking fault profiles are underestimated for W and Mo
- Screw dislocation easy core stability is reproduced only for Nb

Fine-tuning on the selected database improves elastic properties, interstitial and stacking fault energies as well as screw dislocation properties.

Future work will include:

- Start from improved MP-0b model
- and updated fine-tuning method
- Does fine-tuning of W data improve
- properties of other metals?
- Iterative fine-tuning on one DB class at a time

References:

[1] I. Batatia et al, A foundation model for atomistic materials chemistry, arXiv:2401.00096 [2] I. Batatia et al, MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (Vol. 35, pp. 11423-11436).

[3] Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

For updates visit pgrigorev.github.io and tomswinburne.github.io

